Alfa částice
Kategorie: Nezařazeno (celkem: 23179 referátů a seminárek)
Informace o referátu:
- Přidal/a: anonymous
- Datum přidání: 11. srpna 2008
- Zobrazeno: 2748×
- Licence: GNU Free Documentation License
- Seznam autorů a změn
- Vyloučení odpovědnosti
Příbuzná témata
Alfa částice
Jako částice alfa se v částicové fyzice označuje jádro helia. Jde vlastně o atom helia, z něhož byl odstraněn elektronový obal.
Alfa částice se označuje symbolem ? nebo He2+.
Alfa částici tvoří dva protony a dva neutrony (alfa částice je tedy kladně nabitá s elektrickým nábojem +2e).
Proud ? částic se označuje jako záření alfa.
Obsah |
Vlastnosti
Vzhledem k velikosti částic alfa záření jde o nejslabší druh jaderného záření, který může být odstíněn i listem papíru.
Alfa částice se pohybují poměrně pomalu a mají malou pronikavost.
Protonové i neutronové číslo ? částice je rovno 2.
Alfa částice sehrála důležitou úlohu při Rutherfordových experimentech, které vedly ke vzniku planetárního modelu atomu, což významně ovlivnilo znalosti o struktuře atomu.
Vznik
Radioaktivní přeměna alfa představuje přeměnu izotopu doprovázenou emisí částice alfa a uvolněním energie odpovídající hmotnostnímu úbytku v systému. Obecný zápis přeměny alfa je:
.
- X a Y jsou jádra izotopů před a po přeměně alfa
- E je energetický výtěžek z jedné přeměny ve formě kinetické energie částic a v malé míře také ze vzniklého jádra (v souladu ze zákonem zachování hybnosti).
Vzhledem ke kladné hodnotě E se nabízí otázka, proč se během krátké doby nerozpadnou všechna jádra uvažovaného izotopu. Je to dáno výškou potenciálové bariéry, která je vyšší, než je celková energie částice alfa. Podle klasické fyziky by částice neměla opustit nikdy jádro. Výška potenciálové bariéry je definována přitažlivou jadernou silou a odpudivou elektromagnetickou interakcí.
Rozpad alfa je ale ve skutečnosti výsledkem tunelování potenciálové bariéry. Tunelovaní je extrémně nepravděpodobný jev.
Pro představu jak funguje vznik alfa částice si zvolme jako příklad jádro uranu 238U , ve kterém se alfa částice vytvoří uvnitř jádra předtím než z jádra unikne. Ve skutečnosti je tento proces mnohem složitější.
Poločas rozpadu 238U je velmi dlouhý, což vyplývá z faktu, že potenciálová bariéra je velice "neprostupná". Částice alfa, pohybující se uvnitř jádra, musí narazit na vnitřní stěnu bariéry v průměru přibližně 1038krát, než se jí podaří uniknout tunelováním. Toto číslo odpovídá 1021 nárazům za sekundu po dobu 4x109 let .
Zaznamenatelné jsou ale pouze částice kterým se podaří uniknout.
Při alfa rozpadu se z jádra atomu uvolní společně dva neutrony a dva protony. Tato alfa částice se začne pohybovat od mateřského jádra.
Částice alfa jsou vyzařovány některými radioaktivními jádry atomů, tzv. alfa-zářiči.
Počáteční rychlost (a tedy i energie) uvolňovaných částic alfa je charakteristická pro každý izotop. Pokud na částice záření působí elektrické nebo magnetické pole, lze tuto rychlost určit a tak konkrétní izotop detekovat. Z technických důvodů se užívá magnetické pole a výsledku měření se říká magnetické spektrum.
Historie objevu
Počátkem roku 1896 se Henri Becquerel dozvěděl o Röntgenově objevu záření. Inspirován tímto objevem, vzápětí pozoroval sám zčernání fotografické desky, na níž je položena nádoba se solí uranu. Svůj objev zveřejnil 2. března 1896 na zasedání pařížské Akademie. Postupnými pokusy vyvrátil hypotézu, že se jedná o druh fluorescence soli a dokázal, že záření způsobuje kovový uran (přednesl 18. 5. 1896).
Po objeviteli bylo tenkrát záření pojmenováno Becquerelovy paprsky. O dva roky později učinili objev stejného záření thoria G. C. Schmidt v Německu a s malým zpožděním nezávisle Marie Curie ve Francii. Důkaz toho, že Becquerelovy paprsky jsou jádra hélia podal v roce 1908 Ernest Rutheford. Uranová sůl byla zatavená ve speciální velmi tenké kapiláře (aby sklo hélium nepohltilo) a uzavřena ve vakuové baňce. Po několika dnech byly v baňce spektroskopicky detekovány stopy hélia.