Axiom

Kategorie: Nezařazeno (celkem: 23162 referátů a seminárek)

Informace o referátu:

Příbuzná témata



Axiom

Axiom (příbuzný postulát) je základní tvrzení, které se definuje jako pravdivé, a tedy se nedokazuje. Matematické teorie lze založit na soustavách axiomů (od nichž požadujeme, aby byly vnitřně bezesporné a nezávislé, tzn. aby daná skupina axiomů neobsahovala dva vzájemně si protiřečící axiomy a současně aby nebylo možné odvodit některý z axiomů z ostatních). Tuto metodu vytváření matematických teorií označujeme jako axiomatickou a takto vytvořenou teorii za teorii formální. Pro prokazování tvrzení ve formálních teoriích slouží tzv. formální důkaz. Existuje několik druhů formálních důkazů lišících se systémy pravidel pro dokazování. Tyto systémy se nazývají kalkuly – nejznámější jsou hilbertovský a gentzenovský kalkulus (přičemž první z nich je považovaný za základní logický kalkulus celé matematiky).

Obsah

Motivace pro axiomatickou metodu

Důvodem pro používání axiomatických teorií byla vždy v historii snaha o co největší zpřesnění matematiky. Alternativou k axiomatické metodě je totiž matematika založená na geometrickém (či jiném) názoru a intuici. V tomto pojetí jsou některá tvrzení považována za natolik intuitivně zřejmá a jasná, že je není potřeba blíže zdůvodňovat. Příkladem může být například tvrzení známé jako Bolzanova věta, které říká, že spojitá funkce, která nabývá alespoň jedné kladné a jedné záporné hodnoty, již musí nabývat i hodnotu 0. Důkaz v takovém pojetí pak je vlastně jen návodem, podle něhož by si každý člověk měl být schopen na základě intuitivně zřejmých pozorování zdůvodnit platnost daného tvrzení. Toto pojetí sebou ovšem nese řadu rizik – například tvrzení, které někomu přijde intuitivně zcela zřejmé, ještě nemusí být pravdivé. Navíc v rozrůstajících se matematických teoriích je zcela nemožné, aby jediný člověk přečetl všechny existující důkazy. Matematik je tedy v tomto pojetí nucen přijímat za pravdivá i taková tvrzení, která dokázal někdo jiný, a to aniž by se byl schopen přesvědčit, že základní principy v těchto důkazech použité, jsou opravdu intuitivně zřejmé.

Naproti tomu axiomatická metoda stanovuje, která základní tvrzení je možné považovat za natolik zřejmá,[zdroj?] že je lze připustit bez důkazu – tato tvrzení nazývá axiomy. Výběr axiomů je pak jediným místem v celé matematické teorii, kde se uplatňuje názor a intuice.[zdroj?] Kdokoli se rozhodne uznat axiomy za správně zvolené a dobře popisující[zdroj?] zkoumanou teorii, ten si již může být jistý platností každého tvrzení, které je z nich odvozené.

Historie

Nejstarší používání axiomů v matematice se datuje do starověkého Řecka. Řecký matematik Eukleidés ve svém díle Základy zavedl pět geometrických axiomů, pomocí nichž byl schopen logicky odvozovat všechny v té době známé geometrické pravdy. Tyto axiomy vstoupily do historie jako Euklidovy postuláty.

K novému rozvoji axiomatické metody došlo až v druhé polovině 19. století a na začátku století dvacátého. V této době byla axiomatizována i logika a došlo k vytvoření axiomatické teorie množin, která se stala teorií zahrnující celou tehdejší matematiku. Na této změně se nejvíce podíleli David Hilbert, Bertrand Russell, Kurt Gödel, Ernst Zermelo, Gerhard Gentzen ale i mnozí další.

Druhy axiomů

V matematické logice se rozlišují dva druhy axiomů – axiomy logické a vlastní axiomy nějaké teorie.

Vlastní axiomy

Axiom teorie T v jazyce L je každá formule varphi jazyka L taková, že varphi in T (tj. z formálního hlediska je tedy teorie množina svých (vlastních) axiomů). Takové formuli se také někdy říká vlastní axiom T.

Na vlastní axiomy teorií tedy nejsou kladeny žádné jiné požadavky než to, že musí jít o správně utvořené formule. Proto axiomatické teorie mohou být v podstatě také zcela libovolné. Zvlášť poznamenejme, že prázdná množina je také teorií (dokonce pro každý jazyk) – tato teorie se nazývá prázdná teorie.

Logické axiomy

Podrobnější informace naleznete v článku Hilbertovský kalkulus.
Podrobnější informace naleznete v článku Gentzenovský kalkulus.

Logické axiomy vyjadřují základní pravidla rozumového odvozování. Jsou formulovány v jazyce bez mimologických symbolů a nevztahují se přímo k žádné konkrétní teorii. Jsou (v daném systému) pevně dány a přidávají se k vlastním axiomům každé teorie.

Seznam logických axiomů se liší jak pro různé logické kalkuly, tak pro tentýž kalkulus u různých autorů. Jednou z nejběžnějších definicí logických axiomů pro výrokovou logiku resp. predikátovou logiku prvního řádu je hilbertovský klasický kalkulus. Tento kalkulus je základním logickým kalkulem používaným v celé matematice. Jinou možností jak zvolit logické axiomy je gentzenovský kalkulus.

Odkazy

Související články

Související články obsahuje
Portál Matematika
Wikislovník obsahuje slovníkovou definici slova axiom.


| 11. června 2015
kk
Nový příspěvek


Ochrana proti spamu. Kolik je 2x4?



Na-mobil.cz

Spřátelené weby

Přidat stránku k oblíbeným

Nejnovější v diskusi

Diskusní fórum »

TIP: Chcete zkrátit dlouho chvíli sobě nebo blízkému?
Klikněte na Puzzle-prodej.cz a vyberte si z 5000 motivů skladem!
TIP: Hračky a hry za dobré ceny?
Klikněte na Hračky obchod.cz a vyberte si z tisícovky hraček skladem!