Asymetrická kryptografie

Kategorie: Nezařazeno (celkem: 23167 referátů a seminárek)

Informace o referátu:

  • Přidal/a: anonymous
  • Datum přidání: 11. srpna 2008
  • Zobrazeno: 1966×

Příbuzná témata



Asymetrická kryptografie

Asymetrická kryptografie (kryptografie s veřejným klíčem) je skupina kryptografických metod, ve kterých se pro šifrování a dešifrování používají odlišné klíče.

Kromě očividné možnosti pro utajení komunikace se asymetrická kryptografie používá také pro elektronický podpis, tzn. možnost u dat prokázat jejich autora.

Základní principy

Šifrovací klíč pro asymetrickou kryptografii sestává z dvou částí: jedna část se používá pro šifrování zpráv (a příjemce zprávy ani tuto část nemusí znát), druhá pro dešifrování (a odesilatel šifrovaných zpráv ji zpravidla nezná). Je vidět, že ten, kdo šifruje, nemusí s dešifrujícím příjemcem zprávy sdílet žádné tajemství, čímž eliminují potřebu výměny klíčů; tato vlastnost je základní výhodou asymetrické kryptografie.

Nejběžnější verzí asymetrické kryptografie je využívání tzv. veřejného a soukromého klíče: šifrovací klíč je veřejný, majitel klíče ho volně uveřejní, a kdokoli jím může šifrovat jemu určené zprávy; dešifrovací klíč je soukromý, majitel jej drží v tajnosti a pomocí něj může tyto zprávy dešifrovat. (Existují i další metody asymetrické kryptografie, ve kterých je třeba i šifrovací klíč udržovat v tajnosti.)

Je zřejmé, že šifrovací klíč e a dešifrovací klíč d spolu musí být matematicky svázány, avšak nezbytnou podmínkou pro užitečnost šifry je praktická nemožnost ze znalosti šifrovacího klíče spočítat dešifrovací.

Matematicky tedy asymetrická kryptografie postupuje následujícím způsobem:

Šifrování
c = f(m, e)
Dešifrování
m = g(c, d)

V principu se mohou šifrovací a dešifrovací funkce lišit, zpravidla jsou však matematicky přinejmenším velmi podobné.

Mechanismy funkce

Asymetrická kryptografie je založena na tzv. jednocestných funkcích, což jsou operace, které lze snadno provést pouze v jednom směru: ze vstupu lze snadno spočítat výstup, z výstupu však je velmi obtížné nalézt vstup. Nejběžnějším příkladem je například násobení: je velmi snadné vynásobit dvě i velmi velká čísla, avšak rozklad součinu na činitele (tzv. faktorizace) je velmi obtížný. (Na tomto problému je založen např. algoritmus RSA.) Dalšími podobnými problémy jsou výpočet diskrétního logaritmu či problém batohu.

Zástupci



Nový příspěvek


Ochrana proti spamu. Kolik je 2x4?



Na-mobil.cz

Spřátelené weby

Přidat stránku k oblíbeným

Nejnovější v diskusi

Diskusní fórum »

TIP: Chcete zkrátit dlouho chvíli sobě nebo blízkému?
Klikněte na Puzzle-prodej.cz a vyberte si z 5000 motivů skladem!
TIP: Hračky a hry za dobré ceny?
Klikněte na Hračky obchod.cz a vyberte si z tisícovky hraček skladem!